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Abstract

In this study, the unsteady natural convection boundary-layer flow along an impulsively heated vertical isothermal
plate immersed in a stably stratified semi-infinite ambient fluid is explored using scaling analysis and direct numerical
simulation. Scaling relations are obtained for the thermal and velocity boundary layer thicknesses, the boundary layer
velocity, the development time and the Nusselt number, in terms of the Rayleigh and Prandtl numbers and the
stratification parameter. The scaling results are validated using the numerical simulations. © 2001 Elsevier Science

Ltd. All rights reserved.

1. Introduction

The transient response of a vertical natural convection
flow, following from a suddenly imposed surface heating
condition, has been investigated by many researchers.
Most of these studies have been focused on obtaining
similarity solutions under different surface heating con-
ditions and ambient fluid temperatures. For example,
Joshi and Gebhart [1] presented the general transient
natural convection response arising from a sudden
change of the level of energy input flux to a vertical sur-
face element and compared their similarity solutions to
the experimental results. The effects of a stable ambient
thermal stratification on the stability and transition of a
natural convection boundary-layer flow were studied by
Jaluria and Gebhart [2]. Henkes and Hoogendoorn [3]
presented all similarity solutions of the laminar natural
convection boundary-layer equations for air.

An alternative means of studying the transient re-
sponse of the vertical natural convection flow subject to
a suddenly imposed surface heating conditions is to use
the Patterson-Imberger scaling analysis [4] that was
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developed for natural convection flow in a differentially
heated cavity with a uniform temperature. In this study,
that scaling analysis procedure is used to provide scaling
relations for the vertical natural convection flow in a
linearly stratified ambient fluid, subject to a sudden
temperature change on the vertical plate. Numerical
results from direct simulation are then used to validate
the scaling relations.

2. Formulation and scaling analysis
2.1. Governing equations

Under consideration is the unsteady natural convec-
tion boundary-layer flow along an isothermal vertical
plate immersed in a linearly stratified semi-infinite fluid.
The vertical plate, as sketched in Fig. 1, has a height of
H. Initially the incompressible and viscous Newtonian
fluid in the ambient is at rest and is linearly stratified,
characterized by a constant temperature stratification
number S = d7,(Y)/dY, where T,(Y) is the temperature
of the local ambient fluid at the height Y. At time t =0
the vertical plate is abruptly set to a temperature 7,, and
this temperature is maintained thereafter. A two-di-
mensional flow is assumed. It is also assumed that
AT =T, —T,(0.5H) is fixed independent of the
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Nomenclature

f(s) defined by (19)

g acceleration due to gravity

H height of plate

L width of computational domain
Nu mean Nusselt number on the plate
p  p=P/(pl})

P pressure

Pr Prandtl number

Ra Rayleigh number

t

X horizontal coordinate

y y=Y/H

Vs termination height

Y vertical coordinate

p coefficient of thermal expansion

Op boundary-layer thickness scale

Obt thermal boundary-layer thickness scale during

the developing stage

Ob.s viscous boundary-layer thickness for fully
developed stage

Ovs boundary-layer thickness scale for fully

time developed stage
T temperature 0 0 = (T — T,(0.5H))/AT
T, local ambient temperature 0r O = (T; — T,(0.5H)) /AT
Tr fluctuating temperature 0, 0w = (T, — T,(0.5H)) /AT
Ty temperature imposed on the plate K thermal diffusivity
u u=U/U, v kinematic viscosity
Uy horizontal velocity scale o density
U horizontal velocity T t=t/(H/U)
Uy Uy = kRa'?/H T time-scale
v v="V/V Th.s time-scale for fully developed stage
Up vertical velocity scale AT AT =T, — T,(0.5H)
Up g vertical velocity scale during the developing Ax first horizontal mesh size
stage Ay first vertical mesh size
Ubs vertical velocity scale for fully developed stage A6y A0 =1—(y—0.5)s
V vertical velocity At time-step
x x=X/H
variables, S,Ra and Pr, where T,(0.5H) is the initial R — gBATH? o’ 1
temperature of the local ambient fluid at height =Tk Tk (1)

Y = 0.5H and Ra and Pr are the Rayleigh number and
Prandtl number, defined as
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Fig. 1. Flow configuration and the initial temperature profiles
for natural convection boundary-layer flows in a linearly
stratified fluid.

where g is the acceleration due to gravity, v, f and k are
the kinematic viscosity, coefficient of thermal expansion
and thermal diffusivity of the fluid, respectively.

The governing equations are the Navier—Stokes
equations plus the temperature transport equation, with
the Boussinesq assumption allowing their incompress-
ible forms to be used. If 7 = T; + T,(Y) is used where T;
is the fluctuating temperature, the governing equations
can be written in non-dimensional form as follows:

ou Qv
it R, 2
Ox + dy 0 @)
afu+ua—u+va—u—fa—p+ o @ﬁiu (3)
ot ox 9y  Ox Ra'2\ox2 02 )
ov ov ov op P (v v
‘o, (70, 00 Pr
61+u@x+vay ay—i_Ra‘/2 (6x2+6y2) +Pror,
(4)
00; 00; 00¢ 1 %0, %0,
6—T+ua—x+va+0S7Ral/2(a—x2 a—yz s (5)

where u and v are the velocity components in the
directions x and y, respectively, with x the horizontal
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direction and y the vertical, 7 is the time, 0 is the tem-
perature, p is the pressure and s = d0,(y)/dy = HS/AT
is the non-dimensional temperature stratification num-
ber, which is a constant when the environment is linearly
stratified, where 0,(y) is the non-dimensional form of
T,(Y). The non-dimensional quantities are obtained as
follows:

X Y U 4
X =—, y==, Uu=-——, v= )

H H [ [ p
o _ P, T-L05H) 6)
Twuy PTevp VT AT

where U and V are the horizontal and vertical compo-
nents of velocity, P the pressure (including the hydro-
static pressure), and U, = kRa'/?/H which is the
boundary layer velocity scale obtained by Patterson and
Imberger [4] for natural convection flow in a cavity with
differentially heated end walls.

The associated initial and boundary conditions are:

u=v=0, 6;=0 atallx,y and 7<0, (7)
and for 1 >0
u=v=0, 0p=0,—0,) onx=0, 0<y<lI,
Ou 00¢
= = — = = — <y<
o 0, v=0, - 0 on x i’ 0<y«l,
u=v=0, %:0 on0<x<£, y=0,

oy H
ou Ov 00¢ L
i et N <x< =, y=1,
> 3 oy 0 on 0<x g 7

where L is the horizontal length of the computational
domain, which is chosen to be long enough compared to
H to make sure that the assumption of an open
boundary on the right side of the computational domain
is justified.

2.2. Scaling relations

The scaling analysis is limited to the boundary layer
on the isothermal vertical plate. In this region, the scales
for the non-dimensionalized boundary layer thickness,
vertical velocity and time at height y are defined as
on(¥), vp(y) and 1y, (y), respectively. It is further assumed
that v, (y) > uy(y) and 0y(y) < ys, where u,(y) is the
horizontal  velocity scale at height y and
¥ = (0.5 4 0y/s) is the termination height at which the
initial temperature of the local ambient equals that on
the vertical plate, and thus it is the position initially
having zero buoyancy. The analysis follows the same
procedure used by Patterson and Imberger [4].

The analysis is firstly limited to the region 0 <y < .
After that, it will be extended to the remaining region
¥ <y<1.0.

Balancing the unsteady and diffusion terms in (5)
over the thermal boundary layer thickness O(dy,) gives

Sy (T) ~ Ra /412, 9)

For Pr > 1 the buoyancy force is balanced by the viscous
force in (4) yielding a transient vertical velocity scale at
time ©

U, (1) ~ Ra"2A0:(3)[0v. ()] ~ AB: ()1, (10)

where Al;(y) = 0y — 0,(y) = 0y, — (v — 0.5)s.

Heat is also being convected vertically by the velocity
(10) and the layer will continue to grow until the heat
conducted in from the boundary balances that convec-
ted away.

Using (9) and (10) the balance between the convec-
tion and the conduction terms yields a growth time-scale
for the full development of the thermal boundary layer
at height y in the region 0 <y <y,

Abi(y)

—1/2
m(y)fv[ v “} ~ (L4055 (1)

at which time the steady-state velocity and length scales
at height y have become

Ubs (V) ~ AO;(») {%{)}) N s} -12

~ (140.55)7"*)12[1 = (y = 0.5)s], (12)
and
A —~1/4
Ons(y) ~ Ra™ 'V {M + S}
Vs
~ Ra~"4(1 4 0.55) 414, (13)

where 0, = 1 is assumed.

Thus the thermal layer grows until it has reached a
thickness d,5(y) in time tp,4(y). For Pr > 1 the diffusion
of momentum maintains a velocity boundary layer,
O(dy5(v)), which is thicker than the thermal boundary
layer, where

Sys(v) ~ PrPRa™ 42 o P25y, (1), (14)

the result given by Schlichting [5] and Patterson and
Imberger [4] for natural convection flow in a homo-
geneous ambient fluid with differentially heated end walls.
The assumption that the boundary-layer length scales
are very much less than the scale of the cavity
(0vs(y) < yy, that is 0,5(y) < 1) yields the criterion

Ra > P~ (15)

which was given by Patterson and Imberger [4] for
natural convection flow in a homogeneous environment
with differentially heated end walls.

When y is in the range y, < y < 1.0, heat is transferred
out of the environment due to the higher temperature
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there compared to that on the vertical plate. It is ex- When s = 0, that is the environment is homogeneous,
pected that the flow patterns within the boundary layer the scaling relations (11)—(13) become

in this region are approximately symmetric about the

horizontal plane at y =y, to those in the region () ~ Y2 v(y) ~ Y2 Su(y) ~ RaTAA,

2/s < y <y, and therefore the scalings (11)—(13) are also

valid but y in these equations should be replaced by which are exactly the scaling relations obtained by Lin
2y, —y)=(14+2/s—y). and Armfield [6] for the full development of the thermal
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Fig. 2. Transient temperature and streamfunction contours for Ra = 5 x 10%, Pr =7, and s = 4.
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boundary layer of natural convection flow in a homo-
geneous fluid in a cavity.

It is noted that in the region 0 <y <y, heat is con-
ducted into the ambient while in the region y, <y < 1 the
situation is just the opposite. Thus, due to the approxi-
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During the developing stage, the mean Nusselt
number on the vertical plate is

— [ A0y
Nu(t) = /0 50 0y) dy

mate symmetry at y =y, the net heat transfer in the % (1 (y— 0.5)s] Ral/A
upper region of 2/s<y<1 is approximately zero and = / Ra /A 1}2 “dy ~ R (17)
the mean Nusselt number Nu over the vertical plate is 0 amt T
o 2/s 00, 2/s AO; . . , .
N — / () dy — / : t () dy (16) While during the fully developed stage, it becomes

0 Ox 0 bb (y) o 2/s AO{ (y)

Nu = d

The evolution of the boundary-layer flow may be " /0 Ops(¥) Y
divided into the developing stage and the fully developed 2/s

stage, as there are different scaling relations for dy(y) in

~ Ra'™*(1 + 0.5s)l/4/ [1—(y—0.5)s]y *dy
these respective stages, that is (9) for the developing 0

stage and (13) for the fully developed stage. ~ f(s)Ra'*, (18)
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Fig. 3. Time series of 0¢(x,y), v(x,y) and u(x,y) at nine points inside the boundary layer for Ra = 5 x 10, Pr = 7 and s = 4.0. All the
points are located at x = 1/120 while from the bottom to the top y = 0.1,0.2,...,0.9.
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where f(s) is calculated as follows:

Ql1/4
S5 =50 +0.55)"/4(1 + 3.55)573/4, (19)
which, for 2 <5 < 6, has an approximately linear relation
with s. Hence, the scaling relation in (18) may be ap-
proximated by

Nu ~ sRa'*. (20)

3. Numerical results

To validate the scaling relations obtained above, di-
rect numerical simulations have been carried out for the
natural convection boundary-layer flow along a vertical
isothermal plate immersed in a linearly stratified fluid
with 10° <Ra < 10°, 1 < Pr< 100, and 0 <s<6.

3.1. Numerical method

The governing equations (2)-(5) have been solved
using a fractional-step Navier—Stokes solver [7,8]. A
stretched computational mesh is used allowing grid
nodes to be concentrated in regions of rapid solution
variation, adjacent to the vertical plate and the upper
and lower boundaries. The origin lies at the bottom left
corner of the domain with y increasing up the vertical

0.5 e
0 Ra=5d8, s=2, Pr=7
0 Ra=5d8, s=3, Pr=7
04 ' & Ra=5d8, s=4, Pr=7
[ ARa=5d8, s=5, Pr=7
03 | <Ra=5d8, s=6, Pr=7

[ v Ra=1d7, s=4, Pr=7
[ > Ra=5d8, s=4, Pr=7
[+ Ra=1d8, s=4, Pr=7

T TTT7T7

x Ra=1d9, s=4, Pr=7
v ’ y

b:¥) 0.1 | *Ra=5d8, s=4, Pr=1 .
r  ® Ra=5d8, s=4, Pr=100 ]
00 f ]
-0.1 | .
-02 | .

-03 P ! PP T PP T

-1.0 -0.5 0.0 0.5

g.,(sy)

Fig. 4. wvps(y) plotted against g,(s,y), where g,(s,y)=
(140.55)"412[1 — (y = 0.5)s] for 0<y<y, and g(s,y) =
(140.59) (1 +2/s —y)'*[1 = (0.5 +2/s — y)s] for y, <y < 1.

plate and x increasing horizontally into the domain, as
shown in Fig. 1. The horizontal mesh size adjacent to the
vertical plate is Ax =2 x 10™* with a grid stretching
factor of 1.06 per cell until x = 0.1, after which the
stretching factor is gradually reduced until the grid be-
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Fig. 5. Sps(y)Ra'/* plotted against g,(s,y), where gy(s,y)=
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comes uniform in the interior. The vertical mesh size
adjacent to the upper and lower boundaries is
Ay =2 x 107* with again a grid-stretching factor of 1.06
per cell until y = 0.2 for the lower domain and y = 0.8
for the upper domain, after which the stretching factor is
gradually reduced until the grid becomes uniform in the
interior, resulting in a mesh of 64 x 94 grid nodes, which
are distributed symmetrically with respect to the domain
half-height. The time-step used is At = 1 x 107,
Time-step dependency tests have been carried out by
obtaining additional results at half the time-step given
above. The variation in the flow patterns has been found
negligible. Mesh dependency tests have also been carried
out by halving the mesh size at the vertical plate and

300 —r—r—r—r——————

Nu 200 | -
lw i '} 'l
1 2 3
(a) T-l/z
300 T T T

o—e——6—9
Nu 200 } E,B/E/E/E ]

(=
[
N
(=)}

(c) s

upper and lower boundaries and the stretching factor
and halving the time-step. Again the solutions on the
two meshes have shown negligible variation in the flow
patterns.

3.2. Typical evolution of transient flow patterns

Visualizations of the evolution of the numerically
simulated transient temperature and stream function
contours are presented in Fig. 2 for Ra = 5 x 108, Pr =7
and s = 4, in this case y, = 0.75. From these figures, it is
seen that after the natural convection boundary-layer
flow is initiated, the boundary layer at each height grows
for a period of time, but with a vertical variation, as

300 T —

200:-3_,___.—3-————-—"-"-

lw aasal Addaassal PUNET STy 1

(b) Pr

400

200

0 lllllllll L A A A s 2 4
0 100 200
4
(d) Ra

Fig. 7. Nu plotted against: (a) t'/2 for Ra = 5 x 10 and Pr = 7 with five values of s; (b) Pr for Ra = 5 x 10 and s = 4 at 7 times; (c) s
for Ra = 5 x 108 and Pr = 7 at 7 times; (d) Ra'/* for s = 4 and Pr = 7 at 7 times. The symbol legends in (b) and (c) are the same as those

used in (d).
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more clearly illustrated in Fig. 3 where the times series of
0r(x,y), u(x,y) and v(x,y) at nine points within the
boundary layer are presented for Ra =5 x 108, Pr =7
and s =4.0, and therefore this initial heat diffusion
dominated flow is in fact two-dimensional, with the
vertical variation caused by the stratification of the
ambient. For the flows with homogeneous ambient, the
initial heat diffusion dominated flow is one-dimensional,
with no vertical variation.

At each vertical height y, the growth of the thermal
boundary layer ceases with the arrival of a signal trav-
elling up the plate from y = 0 in the region of 0 <y <y,
while travelling down the plate in the region of
¥ <y< 1, following the signal is a series of travelling
waves. The behaviour and the characteristics of these
travelling waves have been extensively investigated, most
of them in the context of a homogeneous ambient [9-13].

After the passing of the travelling waves, the
boundary-layer flow transits to an ultimately steady
flow. At y =y, the rising vertical boundary layer for
y <, ceases, ejecting an intrusion into the domain in-
terior, while for y >y, a second boundary layer is
formed travelling down the wall, which is now cooled
with respect to the local ambient, also ejecting an in-
trusion into the domain interior. The difference in top
and bottom boundary conditions means that the upper
boundary layer is not an exact image of the lower,
however the general structure is similar. The numerical
results for other values of Ra and s show that the basic
structure of the flow does not vary with Ra, although it
is found that the boundary layer thickness decreases
with increasing Ra, as obtained in the scaling analysis.

3.3. Numerical validation and quantification of scalings

The direct numerical simulation results used to vali-
date the scaling relations (11)—(13) are presented in Figs.
4-6, where the maximum velocity within the boundary
layer at each vertical location is used as the velocity scale
and the time-scale is determined as the time when the
temperature traces at each vertical location cease to
change. For each combination of Ra, s and Pr results are
presented at 9 locations equally spaced in the range
0 < y<1.0. From these figures, it is seen that the scaling
results are in very good agreement with the numerical
results, except the results for Pr =1 where large dis-
crepancies are observed in these figures.

Fig. 7 presents Nu plotted against t~'/2, Pr, s, and
Ra'’* for different combinations of Ra, Pr, s and T,
where Nu was obtained from the simulation by inte-
grating the heat transfer on the plate over the full plate
height. It is seen that during the developing stage of the
boundary layer, Nu has approximately linear relations
with t!/2 and Ra'/* and has little dependency on s and
Pr, while after the development of the boundary layer,
it shows little dependency on t and Pr but has ap-

10t * 1

ORa=5d8, Pr=7, s=2
ORa=5d8, Pr=7, s=3
ORa=5d8, Pr=7, s=4
ARa=5d8, Pr=7, s=5
<]Ra=5d8, Pr=7, s=6
VRa=1d7, Pr=7, s=4
[>Ra=5d7, Pr=7, s=4
+Ra=1d8, Pr=7, s=4
X Ra=1d9, Pr=7, s=4
% Ra=5d8, Pr=1, s=4
@ Ra=5d8, Pr=100, s=4
Linear fit
0.0 L L L
0 2 4 6

S

NuRa™*

Fig. 8. NuRa~'/* plotted against s for different values of Raz and
Pr when the flows are at steady state (at T = 10).

proximately linear relations with s and Ra'/*, confirm-

ing the scaling relations (17) and (20). Fig. 8 shows
NuRa~'* plotted against s for different values of Ra
and Pr when the flows are at steady state (at t = 10),
confirming again the scaling relation (20). It is noted
again that the scaling predictions for Nu are in very
good agreement with the numerical results, except the
result for Pr =1 where large discrepancies are observed
in the figures.

The scaling analysis in Section 2.2 is only for Pr > 1.
When Pr — 1, it is found that the numerical results
begin to deviate considerably from the scaling relations
(11), (12), (13), (17) and (20). The reason for these de-
viations is that when Pr ~ 1, the unsteady inertia force,
the viscous force and the buoyancy force are at the same
order and it is impossible to only use the balance be-
tween the buoyancy and viscous forces to yield the
transient vertical velocity scale at time 7, as was used to
obtain (10) for Pr > 1. It is therefore impossible to ob-
tain scaling relations similar to (11), (12), (13), (17) and
(20) for Pr ~ 1.
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